We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
International Journal of Oral Implantology



Forgotten password?


Dear readers,

our online journals are moving. The new (and old) issues of all journals can be found at
In most cases you can log in there directly with your e-mail address and your current password. Otherwise we ask you to register again. Thank you very much.

Your Quintessence Publishing House
Int J Oral Implantol (Berl) 9 (2016), No. 4     16. Dec. 2016
Int J Oral Implantol (Berl) 9 (2016), No. 4  (16.12.2016)

Page 411-424, PubMed:27990508

Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles
Van Dessel, Jeroen / Nicolielo, Laura Ferreira Pinheiro / Huang, Yan / Slagmolen, Pieter / Politis, Constantinus / Lambrichts, Ivo / Jacobs, Reinhilde
Purpose: To determine the accuracy of the latest cone beam computed tomography (CBCT) machines in comparison to multi-slice computer tomography (MSCT) and micro computed tomography (micro-CT) for objectively assessing trabecular and cortical bone quality prior to implant placement.
Materials and methods: Eight edentulous human mandibular bone samples were scanned with seven CBCT scanners (3D Accuitomo 170, i-CAT Next Generation, ProMax 3D Max, Scanora 3D, Cranex 3D, Newtom GiANO and Carestream 9300) and one MSCT system (Somatom Definition Flash) using the clinical exposure protocol with the highest resolution. Micro-CT (SkyScan 1174) images served as a gold standard. A volume of interest (VOI) comprising trabecular and cortical bone only was delineated on the micro-CT. After spatial alignment of all scan types, micro-CT VOIs were overlaid on the CBCT and MSCT images. Segmentation was applied and morphometric parameters were calculated for each scanner. CBCT and MSCT morphometric parameters were compared with micro-CT using mixed-effect models. Intraclass correlation analysis was used to grade the accuracy of each scanner in assessing trabecular and cortical quality in comparison with the gold standard. Bone structure patterns of each scanner were compared with micro-CT in 2D and 3D to facilitate the interpretation of the morphometric analysis.
Results: Morphometric analysis showed an overestimation of the cortical and trabecular bone quantity during CBCT and MSCT evaluation compared to the gold standard micro-CT. The trabecular thickness (Tb.Th) was found to be significantly (P < 0.05) different and the smallest overestimation was found for the ProMax 3D Max (180 µm), followed by the 3D Accuitomo 170 (200 µm), Carestream 9300 (220 µm), Newtom GiANO (240 µm), Cranex 3D (280 µm), Scanora 3D (300 µm), high resolution MSCT (310 µm), i-CAT Next Generation (430 µm) and standard resolution MSCT (510 µm). The underestimation of the cortical thickness (Ct.Th) in ProMax 3D Max (-10 µm), the overestimation in Newtom GiANO (10 µm) and the high resolution MSCT (10 µm) were neglible. However, a significant overestimation (P < 0.05) was found for 3D Accuitomo 170 (110 µm), Scanora 3D (140 µm), standard resolution MSCT (150 µm), Carestream 9300 (190 µm), Cranex 3D (190 µm) and i-CAT Next Generation (230 µm). Comparison of the 2D network and 3D surface distance confirmed the overestimation in bone quantity, but only demonstrated a deviant trabecular network for the i-CAT Next Generation and the standard resolution MSCT. Intraclass correlation coefficients (ICCs) showed a significant (P < 0.05) high intra-observer reliability (ICC > 0.70) in morphometric evaluation between micro-CT and commercially available CBCT scanners (3D Accuitomo 170, Newtom GiANO and ProMax 3D Max). The ICC for Tb.Th and Ct.Th were 0.72 and 0.98 (3D Accuitomo 170), 0.71 and 0.96 (Newtom GiANO), and 0.87 and 0.92 (ProMax 3D Max), respectively.
Conclusions: High resolution CBCT offers a clinical alternative to MSCT to objectively determine the bone quality prior to implant placement. However, not all tested CBCT machines have sufficient resolution to accurately depict the trabecular network or cortical bone.

Conflict-of-interest statement: There is no conflict of interest to declare. Funding: Fellowship support came from Research Foundation Flanders (FWO) from the Belgian government, and Coordination for the Improvement of Higher Education Personnel (CAPES) program and Science without borders from the Brazilian government.

Keywords: bone quality, cone beam CT, micro-CT, multi-slice CT, preoperative planning
fulltext (no access granted) Endnote-Export